ALGEBRAIC CURVES
SOLUTIONS SHEET 12

Unless otherwise specified, k is an algebraically closed field.

Exercise 1. Let a € k* and consider the elliptic curve E with equation
X +Y® =aZ’,
and base point O = [1,—1,0].
(1) Prove that three points on E add to O if and only if they are collinear.
(2) Let P=[z:y:z] € E. Prove =P =[y:x:z].
(3) Prove that E has j-invariant 0.

Solution 1.

(1) We need to show that O is a flex. Indeed, if this is the case, then (O, O) =
O, and thus by point (3) of Exercise 3 on Sheet 12 we have P, + P, +
o(P1,P,) =0 for all P, P, € E. Thus if P,Q, R € E are collinear, then
©(P,Q) = R and thus P+ Q + R = O, and conversely, if P,Q, R € E add
to E, then

P+Q+R=0=P+Q+ p(P,Q)

and thus ¢(P, Q) = R, and thus P, Q, R are collinear.

So let us show that O is a flex. We first compute the tangent at O. The
partial derivatives of £ = X3 + Y3 — aZ3 are Ex = 3X?, By = 3Y? and
Ez = —3aZ*. Evaluating at O (and dividing by 3), we obtain that the
tangent is given by L = X + Y. To show that O is a flex, we need to show
that I(O, EN L) = 3. To do this, we dehomogenize with X = 1, denote
P = (—1,0) and compute

IO, ENL)=1(P,(1+Y?—aZ’)Nn(1+Y))
=I(P,(—aZ*)N(1+Y))
=3I(P,ZN(1+Y))
= 3.

Hence O is a flex and we conclude.
(2) By point (1), if x # y, it suffices to prove that P =[x 1y : 2], Q = [y : x : 2]
and O are collinear. This can be done e.g. by computing that
z y 1
O=det |y = —-1],
z z 0
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which is straightforward (equivalently, you can see that p = (z,y,2), ¢ =
(y,x,z) and 0o = (1, —1,0) are linearily dependent, e.g. as p—q = (r—y)o).
Hence P+ Q4+ 0 =0, ie. Q= —P.

If x = y, we need to show that P is 2-torsion, which translates to showing
that the tangent at P contains O. One computes that the tangent at P is

22X +y*Y — a7,

so if x = y, then O is on the tangent. Hence also in this case, we have
—P=P=lzx:z:z].

(3) To compute the j-invariant, we have to put E into Weierstrass normal form
with a projective change of coordinates. Replacing X by X —Y and Y by
X +Y we obtain the curve

F=(X-YP+(X+Y)>—aZ®
=2X° 4+ 6XY? —aZ’
In the chart {Z # 0} and dividing by 6, we obtain the equation

1 a
YVi= - X34 .
3 6
This is now in Weierstrass normal form, and as no X appears, we have

that j(E) = 0.
Exercise 2. Let O =[0:1: 0] be a flex on an irreducible cubic F' and Z = 0 the

tangent line to F' at O.
(1) Show that = ZY? +bY Z?> + cY XZ + terms in X, Z.
(2) Find a projective change of coordinates (using Y +— Y — gZ —5X) to get
F' to the form
ZY? = cubic in X, Z.
(3) Show that any non-singular cubic is projectively equivalent to
Y*Z =X(X - 2Z)(X - )\2),
for a A € k, A # 0, 1. This is called the Legendre form of an elliptic curve.

Solution 2. (1) As O is a flex with tangent Z, we obtain that 1(O, FNZ) = 3.
Dehomogenizing with Y = 1 and denoting P = (0,0), we hence obtain
I(P,F,N Z) = 3, where F' is the dehomogenization of F' w.r.t. Y. If we
write F, = p(X) + ZQ(X, Z) for some polynomial p of degree < 3, then
we obtain

3=I(P,F,NZ)
=1(P,p(X)N Z)
= exponent of monomial of minimal degree in p.
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Hence we obtain p(X) = p3 X3 for some ps # 0, i.e. F, = p3X3+2Q(Z, X).
As F is irreducible, we have F' = (F,)*, and writing this out gives that F
has the form

F=aZY?4+bYZ?>+cYXZ +terms in X, Z.

We are left to argue that a # 0 so that we can divide by a. From the above
description, we can see that if a = 0, then the multiplicity of P = (0,0) on
F. is at least 2, which contradicts the fact that F' is non-singular at O (as
we have a unique tangent).

As we have
Z(Y — gZ — §X>2 =2Y? - bWZ? - cYXZ +terms in X, Z,
b(Y — gZ . §X)22 = bY'Z* + terms in X, Z
(Y — gz _ gX)XZ — Y XZ + terms in X, Z,

the claim follows.

Let us admit that F' has a flex. Using a projective change of coordinates,
we can assume that it is O, and that the tangent is Z. By the previous
points, and factoring the cubic on the right hand side of (2) (which isn’t
divisible by Z as F' is irreducible), we obtain that F' has the form

Y27 = a(X = MZ)(X — MZ)(X — \32)

for some a, A1, Ay, A3 € k. Scaling Y appropriately we may assume that
a = 1, and replacing X with X + A\3Z we may assume that A3 = 0. So we
arrived at

Y27 = X(X = M2)(X — MoZ).
Note that one of the \; has to be non-zero, as the curve Y27 = X3 is
singular at [0: 0 : 1]. So replacing Z by Z/\; we arrive at
Y37 = X(X - Z)(X = \2).
To conclude, we need to argue that A # 0,1. This is because in the chart
Z # 0, we can write the curve as Y? = X (X —1)(X —\), and if A € {0, 1},

then the origin is a singular point of this curve. Hence we must have

A#£0,1.

Remark. To see that F' has a flex, you can look at the determinant of the Hessian
matrix of I, i.e. the 3 x 3 matrix whose components are all possible partial
derivatives of order 2. One can show that a point on F' is a flex if and only if
the Hessian is not invertible. As F'is a cubic, all partial derivatives of order 2 are
linear, and thus the determinant of the Hessian defines a cubic curve as well. By
Bézout, F' intersects this curve in 9 points, and these are precisely the flexes of F.
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Exercise 3. (1) Use Ex. 5.4 to show that given two triples (pi, ps,p3) and

(2)

(3)

(q1,q2,q3) each of distinct points in P! there exists a unique projective
change of coordinates sending p; to ¢; for i = 1,2, 3.

The cross-ratio of four distinct ordered points (py, p2, p3, p4) in P! is defined
as A € k\ {0,1}, where X is the image of p,; under the unique projective
change of coordinates sending (py, pa, p3) to (00,0, 1).

Show that this defines an action of S3 on &k \ {0,1} and the orbit O, of
A€ k\{0,1}is

Oy = {0NI/AT— A\ 1/(1—A), (A= 1)/A A\ — D}

Solution 3. (1) By Exercise 4 on Sheet 5, there exists a projective change

of coordinates sending (p1,p2) to (q1,¢2). Hence we may assume that
(p1,p2) = (q1, q2), and we need to show that there exists a projective change
of coordinates fixing ¢;, g2 and sending p3 to ¢s.

If we write ¢; = [b;] for some column vectors b;, then as ¢; # ¢ we have
that by, by is a basis of k2. Saying that A € k**2 fixes ¢, and ¢, is equivalent
to saying that by, by are eigenvectors of A, so if we denote B = (b bs), we
look for matricies of the form

A=BDB™!
with D diagonal. That is, we are looking for a diagonal matrix D such that
BDBila:; = b3

where ps = [as], i.e. D sends B~'az to B~'b3. Note that B~'p; = B¢, =
[1:0] and B~ 'py = B71go = [0 : 1], so as p3 and g3 are different from py, ps,
we obtain that B~'az and B~1bs don’t have entries equal to 0. Therefore,
we see that there exists an invertible diagonal matrix D sending B~ 'as
to B7'b;. Hence the matrix A = BDB™! gives a projective change of
coordinates sending fixing py, p2 and sending p3 to g¢s.

To see unicity, it suffices to treat the case where (py, p2, p3) and (¢1, 2, ¢3)
are equal to ([1:0],[0: 1],[1 : 1]) (because if T: P! — P! sends (pi, p2, p3)
to (q1,92,qs3), we can use a projective change of coordinates on the source
resp. target sending the triple to ([1:0],[0: 1],[1 : 1])). Assume that T is
given by A € k**2) then we obtain

T(L:0])=[1:0] — Agyy =0
T([Ol]):[()l] - A12:O,

so A is a diagonal matrix. But then T'([1 : 1]) = [1 : 1] implies that the
values on the diagonal of A agree, i.e. A = aly for some a € k*. Hence
T =1Id.

Nothing to show :) just note that we identify P! with kU {oo} such that

a € k corresponds to [a : 1] € P! and oo = [1: 0].
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(3) Set p; =00, pp =0 and p3 := 1. For 0 € S3 and A € k\ {0, 1}, we define
o - A to be the cross-ratio of (p,-1(1), Po-1(2), Po-1(3), A). To see that this is
an action, let T, be the unique projective change of coordinates sending

(p0*1(1)7 p0*1(2)7pa*1(3)) to (pla b2, p3) In other WOI’dS, we have Ta(pz) = Po(4)
for © = 1,2, 3. Therefore, it follows that

TT o Tcr(pz) = Proo(i) = Troo<pi)7
so by unicity we have T, o T, = T,.,. Hence we obtain
(Too) A=Tre(N) =T, 0T,(N) =7+ (- )).

As by unicity we also have Tjq = Id and so Id -\ = A\, we conclude that we
have a group action of S3 on &\ {0, 1}.

To compute the orbit, we start by computing (23) - A and (123) - \.
Notice that T(3) is given by mapping a — 1 — a, which corresponds to the
projective change of coordinates given by the matrix

(0 1),

and T{23) is given by sending a ﬁ, which corresponds to the projective
change of coordinates given by the matrix

0 1
-1 1)
Hence (23) - A =1— X and (123) - A = 1/(1 — A). As S5 is generated by
(23) and (123), one can use this to compute the whole orbit:
1 1 A
132) - A=1—-— 12) - A= — 13) - A= ——.
Exercise 4. Let E) be an elliptic curve given in its Legendre form

Vi=X(X—-1)(X —\),

with A #£ 0, 1.
1) Show that the j-invariant is given b
( j g y
A=A +1)3
[(Ey) = 28—(
IEN) N2\ 1)2

(2) Show that Ey = E, if and only if € O,.
In fact one can use (2) to find the formula for the j-function, as it is a generator
of the fixed field k(\)%s.



Solution 4.

(1)

We have to put E) into Weierstrass normal form. To this end, we use the

change of coordinates X — X + %, which gives

2 2 3 3
Y2:X3+<(1+A) 201+ +/\)X—|—(1+)\) (1+X) +A1+A

(2)

GA(X)

3 3 27 9 3

and thus a = —(A\? = A +1)/3 and b = —(2)\3 — 30? — 3\ +2)/27. Plugging
this into the formula

4a3
| = 1728—————
J 4a’ + 2707
then gives that
A2 — N+ 1)3
(B = A AT
IEN) N —1)?

From the above expression and using the description of O,, it is straight-
forward to show that if y € O,, then j(E,) = j(E\) and thus E,, = E,; we
just plug-in all elements of the orbit into the expression of the j-invariant.

On the other hand, given A € k\ {0,1}, we want to show that only
elements of O, yield the same j-invariant. That is, we want to find the
roots of the polynomial

(X)) =N —1)(X? =X +1)° = (M= A+ 1)°X3(X - 1)~

Indeed, the elements p € k\ {0,1} with j(E,) = j(E\) are precisely the
roots of F). As we want to show that the roots are precisely O, and the
leading coefficient of F)(X) is A2(A — 1)2, let us define also

=XA-1) ] X -a

acO)y

S (X = NXA— DX+ A= 1) — XA = 1)(XA = A+ 1)(XA— X — ).

If we can show that F)\(X) = G,(X), then we are done. In principle we
could just compute this, but here is a slightly smarter way to do it: notice
that there is a non-empty open subset U C A!\ {0,1} such that for all
A € U, the orbit O, has precisely 6 elements. To see this, note that if two
expressions in the orbit agree, this gives a quadratic equation for A, so if
we exlude the finitely many solutions to these finitely many equations, we
get the desired U. As we computed that all the elements of the orbit give
the same j-invariant, we conclude that for A € U, G, is a polynomial with
6 simple roots and leading coefficient A?(\ — 1)?, and every root of G, is
also a root of the degree 6 polynomial F, which also has leading coefficient

A?(A — 1)%2. Hence in this case we have F) = G,. But then, if we define
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F,G € k[X,Y] by

FX,Y)=Y*(Y —1)*(X?* =X +1P - (Y =Y +1)’X*(X - 1)?

GX,)Y) =(X-YV)XY -1 X4+Y -1D)X-XY-1D)XY-Y+ )XY -X-Y),
we obtain by the above argument that V(F — G) contains the non-empty

open subset Al x U, and thus V(F — G) = A% ie. F = G. This concludes
the exercise.



