

ALGEBRAIC CURVES SOLUTIONS SHEET 12

Unless otherwise specified, k is an algebraically closed field.

Exercise 1. Let $a \in k^*$ and consider the elliptic curve E with equation

$$X^3 + Y^3 = aZ^3,$$

and base point $O = [1, -1, 0]$.

- (1) Prove that three points on E add to O if and only if they are collinear.
- (2) Let $P = [x : y : z] \in E$. Prove $-P = [y : x : z]$.
- (3) Prove that E has j -invariant 0.

Solution 1.

- (1) We need to show that O is a flex. Indeed, if this is the case, then $\varphi(O, O) = O$, and thus by point (3) of Exercise 3 on Sheet 12 we have $P_1 + P_2 + \varphi(P_1, P_2) = O$ for all $P_1, P_2 \in E$. Thus if $P, Q, R \in E$ are collinear, then $\varphi(P, Q) = R$ and thus $P + Q + R = O$, and conversely, if $P, Q, R \in E$ add to E , then

$$P + Q + R = O = P + Q + \varphi(P, Q)$$

and thus $\varphi(P, Q) = R$, and thus P, Q, R are collinear.

So let us show that O is a flex. We first compute the tangent at O . The partial derivatives of $E = X^3 + Y^3 - aZ^3$ are $E_X = 3X^2$, $E_Y = 3Y^2$ and $E_Z = -3aZ^2$. Evaluating at O (and dividing by 3), we obtain that the tangent is given by $L = X + Y$. To show that O is a flex, we need to show that $I(O, E \cap L) = 3$. To do this, we dehomogenize with $X = 1$, denote $P = (-1, 0)$ and compute

$$\begin{aligned} I(O, E \cap L) &= I(P, (1 + Y^3 - aZ^3) \cap (1 + Y)) \\ &= I(P, (-aZ^3) \cap (1 + Y)) \\ &= 3I(P, Z \cap (1 + Y)) \\ &= 3. \end{aligned}$$

Hence O is a flex and we conclude.

- (2) By point (1), if $x \neq y$, it suffices to prove that $P = [x : y : z]$, $Q = [y : x : z]$ and O are collinear. This can be done e.g. by computing that

$$0 = \det \begin{pmatrix} x & y & 1 \\ y & x & -1 \\ z & z & 0 \end{pmatrix},$$

which is straightforward (equivalently, you can see that $p = (x, y, z)$, $q = (y, x, z)$ and $o = (1, -1, 0)$ are linearly dependent, e.g. as $p - q = (x - y)o$). Hence $P + Q + O = O$, i.e. $Q = -P$.

If $x = y$, we need to show that P is 2-torsion, which translates to showing that the tangent at P contains O . One computes that the tangent at P is

$$x^2X + y^2Y - az^2Z,$$

so if $x = y$, then O is on the tangent. Hence also in this case, we have $-P = P = [x : x : z]$.

(3) To compute the j -invariant, we have to put E into Weierstrass normal form with a projective change of coordinates. Replacing X by $X - Y$ and Y by $X + Y$ we obtain the curve

$$\begin{aligned}\tilde{F} &= (X - Y)^3 + (X + Y)^3 - aZ^3 \\ &= 2X^3 + 6XY^2 - aZ^3.\end{aligned}$$

In the chart $\{Z \neq 0\}$ and dividing by 6, we obtain the equation

$$Y^2 = -\frac{1}{3}X^3 + \frac{a}{6}.$$

This is now in Weierstrass normal form, and as no X appears, we have that $j(E) = 0$.

Exercise 2. Let $O = [0 : 1 : 0]$ be a flex on an irreducible cubic F and $Z = 0$ the tangent line to F at O .

- (1) Show that $F = ZY^2 + bYZ^2 + cYXZ + \text{ terms in } X, Z$.
- (2) Find a projective change of coordinates (using $Y \mapsto Y - \frac{b}{2}Z - \frac{c}{2}X$) to get F to the form

$$ZY^2 = \text{cubic in } X, Z.$$

(3) Show that any non-singular cubic is projectively equivalent to

$$Y^2Z = X(X - Z)(X - \lambda Z),$$

for a $\lambda \in k$, $\lambda \neq 0, 1$. This is called the Legendre form of an elliptic curve.

Solution 2. (1) As O is a flex with tangent Z , we obtain that $I(O, F \cap Z) = 3$.

Dehomogenizing with $Y = 1$ and denoting $P = (0, 0)$, we hence obtain $I(P, F_* \cap Z) = 3$, where F is the dehomogenization of F w.r.t. Y . If we write $F_* = p(X) + ZQ(X, Z)$ for some polynomial p of degree ≤ 3 , then we obtain

$$\begin{aligned}3 &= I(P, F_* \cap Z) \\ &= I(P, p(X) \cap Z) \\ &= \text{exponent of monomial of minimal degree in } p.\end{aligned}$$

Hence we obtain $p(X) = p_3X^3$ for some $p_3 \neq 0$, i.e. $F_* = p_3X^3 + ZQ(Z, X)$. As F is irreducible, we have $F = (F_*)^*$, and writing this out gives that F has the form

$$F = aZY^2 + bYZ^2 + cYXZ + \text{terms in } X, Z.$$

We are left to argue that $a \neq 0$ so that we can divide by a . From the above description, we can see that if $a = 0$, then the multiplicity of $P = (0, 0)$ on F_* is at least 2, which contradicts the fact that F is non-singular at O (as we have a unique tangent).

(2) As we have

$$\begin{aligned} Z(Y - \frac{b}{2}Z - \frac{c}{2}X)^2 &= ZY^2 - bYZ^2 - cYXZ + \text{terms in } X, Z, \\ b(Y - \frac{b}{2}Z - \frac{c}{2}X)Z^2 &= bYZ^2 + \text{terms in } X, Z \\ c(Y - \frac{b}{2}Z - \frac{c}{2}X)XZ &= cYXZ + \text{terms in } X, Z, \end{aligned}$$

the claim follows.

(3) Let us admit that F has a flex. Using a projective change of coordinates, we can assume that it is O , and that the tangent is Z . By the previous points, and factoring the cubic on the right hand side of (2) (which isn't divisible by Z as F is irreducible), we obtain that F has the form

$$Y^2Z = a(X - \lambda_1Z)(X - \lambda_2Z)(X - \lambda_3Z)$$

for some $a, \lambda_1, \lambda_2, \lambda_3 \in k$. Scaling Y appropriately we may assume that $a = 1$, and replacing X with $X + \lambda_3Z$ we may assume that $\lambda_3 = 0$. So we arrived at

$$Y^2Z = X(X - \lambda_1Z)(X - \lambda_2Z).$$

Note that one of the λ_i has to be non-zero, as the curve $Y^2Z = X^3$ is singular at $[0 : 0 : 1]$. So replacing Z by Z/λ_i we arrive at

$$Y^2Z = X(X - Z)(X - \lambda Z).$$

To conclude, we need to argue that $\lambda \neq 0, 1$. This is because in the chart $Z \neq 0$, we can write the curve as $Y^2 = X(X - 1)(X - \lambda)$, and if $\lambda \in \{0, 1\}$, then the origin is a singular point of this curve. Hence we must have $\lambda \neq 0, 1$.

Remark. To see that F has a flex, you can look at the determinant of the Hessian matrix of F , i.e. the 3×3 matrix whose components are all possible partial derivatives of order 2. One can show that a point on F is a flex if and only if the Hessian is not invertible. As F is a cubic, all partial derivatives of order 2 are linear, and thus the determinant of the Hessian defines a cubic curve as well. By Bézout, F intersects this curve in 9 points, and these are precisely the flexes of F .

Exercise 3.

- (1) Use Ex. 5.4 to show that given two triples (p_1, p_2, p_3) and (q_1, q_2, q_3) each of distinct points in \mathbb{P}^1 there exists a unique projective change of coordinates sending p_i to q_i for $i = 1, 2, 3$.
- (2) The *cross-ratio* of four distinct ordered points (p_1, p_2, p_3, p_4) in \mathbb{P}^1 is defined as $\lambda \in k \setminus \{0, 1\}$, where λ is the image of p_4 under the unique projective change of coordinates sending (p_1, p_2, p_3) to $(\infty, 0, 1)$.
- (3) Show that this defines an action of S_3 on $k \setminus \{0, 1\}$ and the orbit \mathcal{O}_λ of $\lambda \in k \setminus \{0, 1\}$ is

$$\mathcal{O}_\lambda = \{\lambda, 1/\lambda, 1 - \lambda, 1/(1 - \lambda), (\lambda - 1)/\lambda, \lambda/(\lambda - 1)\}.$$

Solution 3.

- (1) By Exercise 4 on Sheet 5, there exists a projective change of coordinates sending (p_1, p_2) to (q_1, q_2) . Hence we may assume that $(p_1, p_2) = (q_1, q_2)$, and we need to show that there exists a projective change of coordinates fixing q_1, q_2 and sending p_3 to q_3 .

If we write $q_i = [b_i]$ for some column vectors b_i , then as $q_1 \neq q_2$ we have that b_1, b_2 is a basis of k^2 . Saying that $A \in k^{2 \times 2}$ fixes q_1 and q_2 is equivalent to saying that b_1, b_2 are eigenvectors of A , so if we denote $B = (b_1 \ b_2)$, we look for matrices of the form

$$A = BDB^{-1}$$

with D diagonal. That is, we are looking for a diagonal matrix D such that

$$BDB^{-1}a_3 = b_3$$

where $p_3 = [a_3]$, i.e. D sends $B^{-1}a_3$ to $B^{-1}b_3$. Note that $B^{-1}p_1 = B^{-1}q_1 = [1 : 0]$ and $B^{-1}p_2 = B^{-1}q_2 = [0 : 1]$, so as p_3 and q_3 are different from p_1, p_2 , we obtain that $B^{-1}a_3$ and $B^{-1}b_3$ don't have entries equal to 0. Therefore, we see that there exists an invertible diagonal matrix D sending $B^{-1}a_3$ to $B^{-1}b_3$. Hence the matrix $A = BDB^{-1}$ gives a projective change of coordinates sending p_1, p_2 and sending p_3 to q_3 .

To see unicity, it suffices to treat the case where (p_1, p_2, p_3) and (q_1, q_2, q_3) are equal to $([1 : 0], [0 : 1], [1 : 1])$ (because if $T: \mathbb{P}^1 \rightarrow \mathbb{P}^1$ sends (p_1, p_2, p_3) to (q_1, q_2, q_3) , we can use a projective change of coordinates on the source resp. target sending the triple to $([1 : 0], [0 : 1], [1 : 1])$). Assume that T is given by $A \in k^{2 \times 2}$, then we obtain

$$\begin{aligned} T([1 : 0]) &= [1 : 0] \implies A_{21} = 0 \\ T([0 : 1]) &= [0 : 1] \implies A_{12} = 0, \end{aligned}$$

so A is a diagonal matrix. But then $T([1 : 1]) = [1 : 1]$ implies that the values on the diagonal of A agree, i.e. $A = aI_2$ for some $a \in k^*$. Hence $T = \text{Id}$.

- (2) Nothing to show :) just note that we identify \mathbb{P}^1 with $k \cup \{\infty\}$ such that $a \in k$ corresponds to $[a : 1] \in \mathbb{P}^1$ and $\infty = [1 : 0]$.

(3) Set $p_1 := \infty$, $p_2 := 0$ and $p_3 := 1$. For $\sigma \in S_3$ and $\lambda \in k \setminus \{0, 1\}$, we define $\sigma \cdot \lambda$ to be the cross-ratio of $(p_{\sigma^{-1}(1)}, p_{\sigma^{-1}(2)}, p_{\sigma^{-1}(3)}, \lambda)$. To see that this is an action, let T_σ be the unique projective change of coordinates sending $(p_{\sigma^{-1}(1)}, p_{\sigma^{-1}(2)}, p_{\sigma^{-1}(3)})$ to (p_1, p_2, p_3) . In other words, we have $T_\sigma(p_i) = p_{\sigma(i)}$ for $i = 1, 2, 3$. Therefore, it follows that

$$T_\tau \circ T_\sigma(p_i) = p_{\tau \circ \sigma(i)} = T_{\tau \circ \sigma}(p_i),$$

so by unicity we have $T_\tau \circ T_\sigma = T_{\tau \circ \sigma}$. Hence we obtain

$$(\tau \circ \sigma) \cdot \lambda = T_{\tau \circ \sigma}(\lambda) = T_\tau \circ T_\sigma(\lambda) = \tau \cdot (\sigma \cdot \lambda).$$

As by unicity we also have $T_{\text{Id}} = \text{Id}$ and so $\text{Id} \cdot \lambda = \lambda$, we conclude that we have a group action of S_3 on $k \setminus \{0, 1\}$.

To compute the orbit, we start by computing $(23) \cdot \lambda$ and $(123) \cdot \lambda$. Notice that $T_{(23)}$ is given by mapping $a \mapsto 1 - a$, which corresponds to the projective change of coordinates given by the matrix

$$\begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix},$$

and $T_{(123)}$ is given by sending $a \mapsto \frac{1}{1-a}$, which corresponds to the projective change of coordinates given by the matrix

$$\begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}.$$

Hence $(23) \cdot \lambda = 1 - \lambda$ and $(123) \cdot \lambda = 1/(1 - \lambda)$. As S_3 is generated by (23) and (123) , one can use this to compute the whole orbit:

$$(132) \cdot \lambda = 1 - \frac{1}{\lambda}, \quad (12) \cdot \lambda = \frac{1}{\lambda}, \quad (13) \cdot \lambda = \frac{\lambda}{\lambda - 1}.$$

Exercise 4. Let E_λ be an elliptic curve given in its Legendre form

$$Y^2 = X(X - 1)(X - \lambda),$$

with $\lambda \neq 0, 1$.

(1) Show that the j -invariant is given by

$$j(E_\lambda) = 2^8 \frac{(\lambda^2 - \lambda + 1)^3}{\lambda^2(\lambda - 1)^2}.$$

(2) Show that $E_\lambda \cong E_\mu$ if and only if $\mu \in \mathcal{O}_\lambda$.

In fact one can use (2) to find the formula for the j -function, as it is a generator of the fixed field $k(\lambda)^{S_3}$.

Solution 4.

(1) We have to put E_λ into Weierstrass normal form. To this end, we use the change of coordinates $X \mapsto X + \frac{1+\lambda}{3}$, which gives

$$Y^2 = X^3 + \left(\frac{(1+\lambda)^2}{3} - \frac{2(1+\lambda)^2}{3} + \lambda \right) X + \frac{(1+\lambda)^3}{27} - \frac{(1+\lambda)^3}{9} + \lambda \frac{1+\lambda}{3}$$

and thus $a = -(\lambda^2 - \lambda + 1)/3$ and $b = -(2\lambda^3 - 3\lambda^2 - 3\lambda + 2)/27$. Plugging this into the formula

$$j = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

then gives that

$$j(E_\lambda) = 2^8 \frac{(\lambda^2 - \lambda + 1)^3}{\lambda^2(\lambda - 1)^2}.$$

(2) From the above expression and using the description of \mathcal{O}_λ , it is straightforward to show that if $\mu \in \mathcal{O}_\lambda$, then $j(E_\mu) = j(E_\lambda)$ and thus $E_\mu \cong E_\lambda$; we just plug-in all elements of the orbit into the expression of the j -invariant.

On the other hand, given $\lambda \in k \setminus \{0, 1\}$, we want to show that only elements of \mathcal{O}_λ yield the same j -invariant. That is, we want to find the roots of the polynomial

$$F_\lambda(X) = \lambda^2(\lambda - 1)^2(X^2 - X + 1)^3 - (\lambda^2 - \lambda + 1)^3X^2(X - 1)^2.$$

Indeed, the elements $\mu \in k \setminus \{0, 1\}$ with $j(E_\mu) = j(E_\lambda)$ are precisely the roots of F_λ . As we want to show that the roots are precisely \mathcal{O}_λ and the leading coefficient of $F_\lambda(X)$ is $\lambda^2(\lambda - 1)^2$, let us define also

$$\begin{aligned} G_\lambda(X) &= \lambda^2(\lambda - 1)^2 \prod_{\alpha \in \mathcal{O}_\lambda} (X - \alpha) \\ &= (X - \lambda)(X\lambda - 1)(X + \lambda - 1)(X - X\lambda - 1)(X\lambda - \lambda + 1)(X\lambda - X - \lambda). \end{aligned}$$

If we can show that $F_\lambda(X) = G_\lambda(X)$, then we are done. In principle we could just compute this, but here is a slightly smarter way to do it: notice that there is a non-empty open subset $U \subseteq \mathbb{A}^1 \setminus \{0, 1\}$ such that for all $\lambda \in U$, the orbit \mathcal{O}_λ has precisely 6 elements. To see this, note that if two expressions in the orbit agree, this gives a quadratic equation for λ , so if we exclude the finitely many solutions to these finitely many equations, we get the desired U . As we computed that all the elements of the orbit give the same j -invariant, we conclude that for $\lambda \in U$, G_λ is a polynomial with 6 simple roots and leading coefficient $\lambda^2(\lambda - 1)^2$, and every root of G_λ is also a root of the degree 6 polynomial F_λ , which also has leading coefficient $\lambda^2(\lambda - 1)^2$. Hence in this case we have $F_\lambda = G_\lambda$. But then, if we define

$F, G \in k[X, Y]$ by

$$F(X, Y) := Y^2(Y - 1)^2(X^2 - X + 1)^3 - (Y^2 - Y + 1)^3X^2(X - 1)^2$$

$$G(X, Y) := (X - Y)(XY - 1)(X + Y - 1)(X - XY - 1)(XY - Y + 1)(XY - X - Y),$$

we obtain by the above argument that $V(F - G)$ contains the non-empty open subset $\mathbb{A}^1 \times U$, and thus $V(F - G) = \mathbb{A}^2$, i.e. $F = G$. This concludes the exercise.