
ALGEBRAIC CURVES
SOLUTIONS SHEET 12

Unless otherwise specified, k is an algebraically closed field.

Exercise 1. Let a ∈ k∗ and consider the elliptic curve E with equation

X3 + Y 3 = aZ3,

and base point O = [1,−1, 0].

(1) Prove that three points on E add to O if and only if they are collinear.
(2) Let P = [x : y : z] ∈ E. Prove −P = [y : x : z].
(3) Prove that E has j-invariant 0.

Solution 1.

(1) We need to show that O is a flex. Indeed, if this is the case, then φ(O,O) =
O, and thus by point (3) of Exercise 3 on Sheet 12 we have P1 + P2 +
φ(P1, P2) = O for all P1, P2 ∈ E. Thus if P,Q,R ∈ E are collinear, then
φ(P,Q) = R and thus P +Q+R = O, and conversely, if P,Q,R ∈ E add
to E, then

P +Q+R = O = P +Q+ φ(P,Q)

and thus φ(P,Q) = R, and thus P,Q,R are collinear.
So let us show that O is a flex. We first compute the tangent at O. The

partial derivatives of E = X3 + Y 3 − aZ3 are EX = 3X2, EY = 3Y 2 and
EZ = −3aZ2. Evaluating at O (and dividing by 3), we obtain that the
tangent is given by L = X + Y . To show that O is a flex, we need to show
that I(O,E ∩ L) = 3. To do this, we dehomogenize with X = 1, denote
P = (−1, 0) and compute

I(O,E ∩ L) = I(P, (1 + Y 3 − aZ3) ∩ (1 + Y ))

= I(P, (−aZ3) ∩ (1 + Y ))

= 3I(P,Z ∩ (1 + Y ))

= 3.

Hence O is a flex and we conclude.
(2) By point (1), if x ̸= y, it suffices to prove that P = [x : y : z], Q = [y : x : z]

and O are collinear. This can be done e.g. by computing that

0 = det

x y 1
y x −1
z z 0

 ,
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which is straightforward (equivalently, you can see that p = (x, y, z), q =
(y, x, z) and o = (1,−1, 0) are linearily dependent, e.g. as p−q = (x−y)o).
Hence P +Q+O = O, i.e. Q = −P .
If x = y, we need to show that P is 2-torsion, which translates to showing

that the tangent at P contains O. One computes that the tangent at P is

x2X + y2Y − az2Z,

so if x = y, then O is on the tangent. Hence also in this case, we have
−P = P = [x : x : z].

(3) To compute the j-invariant, we have to put E into Weierstrass normal form
with a projective change of coordinates. Replacing X by X − Y and Y by
X + Y we obtain the curve

F̃ = (X − Y )3 + (X + Y )3 − aZ3

= 2X3 + 6XY 2 − aZ3.

In the chart {Z ̸= 0} and dividing by 6, we obtain the equation

Y 2 = −1

3
X3 +

a

6
.

This is now in Weierstrass normal form, and as no X appears, we have
that j(E) = 0.

Exercise 2. Let O = [0 : 1 : 0] be a flex on an irreducible cubic F and Z = 0 the
tangent line to F at O.

(1) Show that F = ZY 2 + bY Z2 + cY XZ + terms in X,Z.
(2) Find a projective change of coordinates (using Y 7→ Y − b

2
Z − c

2
X) to get

F to the form

ZY 2 = cubic in X,Z.

(3) Show that any non-singular cubic is projectively equivalent to

Y 2Z = X(X − Z)(X − λZ),

for a λ ∈ k, λ ̸= 0, 1. This is called the Legendre form of an elliptic curve.

Solution 2. (1) As O is a flex with tangent Z, we obtain that I(O,F ∩Z) = 3.
Dehomogenizing with Y = 1 and denoting P = (0, 0), we hence obtain
I(P, F∗ ∩ Z) = 3, where F is the dehomogenization of F w.r.t. Y . If we
write F∗ = p(X) + ZQ(X,Z) for some polynomial p of degree ≤ 3, then
we obtain

3 = I(P, F∗ ∩ Z)

= I(P, p(X) ∩ Z)

= exponent of monomial of minimal degree in p.
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Hence we obtain p(X) = p3X
3 for some p3 ̸= 0, i.e. F∗ = p3X

3+ZQ(Z,X).
As F is irreducible, we have F = (F∗)

∗, and writing this out gives that F
has the form

F = aZY 2 + bY Z2 + cY XZ + terms in X,Z.

We are left to argue that a ̸= 0 so that we can divide by a. From the above
description, we can see that if a = 0, then the multiplicity of P = (0, 0) on
F∗ is at least 2, which contradicts the fact that F is non-singular at O (as
we have a unique tangent).

(2) As we have

Z(Y − b

2
Z − c

2
X)2 = ZY 2 − bY Z2 − cY XZ + terms in X,Z,

b(Y − b

2
Z − c

2
X)Z2 = bY Z2 + terms in X,Z

c(Y − b

2
Z − c

2
X)XZ = cY XZ + terms in X,Z,

the claim follows.
(3) Let us admit that F has a flex. Using a projective change of coordinates,

we can assume that it is O, and that the tangent is Z. By the previous
points, and factoring the cubic on the right hand side of (2) (which isn’t
divisible by Z as F is irreducible), we obtain that F has the form

Y 2Z = a(X − λ1Z)(X − λ2Z)(X − λ3Z)

for some a, λ1, λ2, λ3 ∈ k. Scaling Y appropriately we may assume that
a = 1, and replacing X with X + λ3Z we may assume that λ3 = 0. So we
arrived at

Y 2Z = X(X − λ1Z)(X − λ2Z).

Note that one of the λi has to be non-zero, as the curve Y 2Z = X3 is
singular at [0 : 0 : 1]. So replacing Z by Z/λi we arrive at

Y 2Z = X(X − Z)(X − λZ).

To conclude, we need to argue that λ ̸= 0, 1. This is because in the chart
Z ̸= 0, we can write the curve as Y 2 = X(X−1)(X−λ), and if λ ∈ {0, 1},
then the origin is a singular point of this curve. Hence we must have
λ ̸= 0, 1.

Remark. To see that F has a flex, you can look at the determinant of the Hessian
matrix of F , i.e. the 3 × 3 matrix whose components are all possible partial
derivatives of order 2. One can show that a point on F is a flex if and only if
the Hessian is not invertible. As F is a cubic, all partial derivatives of order 2 are
linear, and thus the determinant of the Hessian defines a cubic curve as well. By
Bézout, F intersects this curve in 9 points, and these are precisely the flexes of F .
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Exercise 3. (1) Use Ex. 5.4 to show that given two triples (p1, p2, p3) and
(q1, q2, q3) each of distinct points in P1 there exists a unique projective
change of coordinates sending pi to qi for i = 1, 2, 3.

(2) The cross-ratio of four distinct ordered points (p1, p2, p3, p4) in P1 is defined
as λ ∈ k \ {0, 1}, where λ is the image of p4 under the unique projective
change of coordinates sending (p1, p2, p3) to (∞, 0, 1).

(3) Show that this defines an action of S3 on k \ {0, 1} and the orbit Oλ of
λ ∈ k \ {0, 1} is

Oλ = {λ, 1/λ, 1− λ, 1/(1− λ), (λ− 1)/λ, λ/(λ− 1)}.

Solution 3. (1) By Exercise 4 on Sheet 5, there exists a projective change
of coordinates sending (p1, p2) to (q1, q2). Hence we may assume that
(p1, p2) = (q1, q2), and we need to show that there exists a projective change
of coordinates fixing q1, q2 and sending p3 to q3.

If we write qi = [bi] for some column vectors bi, then as q1 ̸= q2 we have
that b1, b2 is a basis of k2. Saying that A ∈ k2×2 fixes q1 and q2 is equivalent
to saying that b1, b2 are eigenvectors of A, so if we denote B = (b1 b2), we
look for matricies of the form

A = BDB−1

with D diagonal. That is, we are looking for a diagonal matrix D such that

BDB−1a3 = b3

where p3 = [a3], i.e. D sends B−1a3 to B−1b3. Note that B
−1p1 = B−1q1 =

[1 : 0] and B−1p2 = B−1q2 = [0 : 1], so as p3 and q3 are different from p1, p2,
we obtain that B−1a3 and B−1b3 don’t have entries equal to 0. Therefore,
we see that there exists an invertible diagonal matrix D sending B−1a3
to B−1b3. Hence the matrix A = BDB−1 gives a projective change of
coordinates sending fixing p1, p2 and sending p3 to q3.
To see unicity, it suffices to treat the case where (p1, p2, p3) and (q1, q2, q3)

are equal to ([1 : 0], [0 : 1], [1 : 1]) (because if T : P1 → P1 sends (p1, p2, p3)
to (q1, q2, q3), we can use a projective change of coordinates on the source
resp. target sending the triple to ([1 : 0], [0 : 1], [1 : 1])). Assume that T is
given by A ∈ k2×2, then we obtain

T ([1 : 0]) = [1 : 0] =⇒ A21 = 0

T ([0 : 1]) = [0 : 1] =⇒ A12 = 0,

so A is a diagonal matrix. But then T ([1 : 1]) = [1 : 1] implies that the
values on the diagonal of A agree, i.e. A = aI2 for some a ∈ k∗. Hence
T = Id.

(2) Nothing to show :) just note that we identify P1 with k ∪ {∞} such that
a ∈ k corresponds to [a : 1] ∈ P1 and ∞ = [1 : 0].
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(3) Set p1 := ∞, p2 := 0 and p3 := 1. For σ ∈ S3 and λ ∈ k \ {0, 1}, we define
σ · λ to be the cross-ratio of (pσ−1(1), pσ−1(2), pσ−1(3), λ). To see that this is
an action, let Tσ be the unique projective change of coordinates sending
(pσ−1(1), pσ−1(2), pσ−1(3)) to (p1, p2, p3). In other words, we have Tσ(pi) = pσ(i)
for i = 1, 2, 3. Therefore, it follows that

Tτ ◦ Tσ(pi) = pτ◦σ(i) = Tτ◦σ(pi),

so by unicity we have Tτ ◦ Tσ = Tτ◦σ. Hence we obtain

(τ ◦ σ) · λ = Tτ◦σ(λ) = Tτ ◦ Tσ(λ) = τ · (σ · λ).
As by unicity we also have TId = Id and so Id ·λ = λ, we conclude that we
have a group action of S3 on k \ {0, 1}.
To compute the orbit, we start by computing (23) · λ and (123) · λ.

Notice that T(23) is given by mapping a 7→ 1− a, which corresponds to the
projective change of coordinates given by the matrix(

−1 1
0 1

)
,

and T(123) is given by sending a 7→ 1
1−a

, which corresponds to the projective
change of coordinates given by the matrix(

0 1
−1 1

)
.

Hence (23) · λ = 1 − λ and (123) · λ = 1/(1 − λ). As S3 is generated by
(23) and (123), one can use this to compute the whole orbit:

(132) · λ = 1− 1

λ
, (12) · λ =

1

λ
, (13) · λ =

λ

λ− 1
.

Exercise 4. Let Eλ be an elliptic curve given in its Legendre form

Y 2 = X(X − 1)(X − λ),

with λ ̸= 0, 1.

(1) Show that the j-invariant is given by

j(Eλ) = 28
(λ2 − λ+ 1)3

λ2(λ− 1)2
.

(2) Show that Eλ
∼= Eµ if and only if µ ∈ Oλ.

In fact one can use (2) to find the formula for the j-function, as it is a generator
of the fixed field k(λ)S3 .
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Solution 4.

(1) We have to put Eλ into Weierstrass normal form. To this end, we use the
change of coordinates X 7→ X + 1+λ

3
, which gives

Y 2 = X3 +

(
(1 + λ)2

3
− 2(1 + λ)2

3
+ λ

)
X +

(1 + λ)3

27
− (1 + λ)3

9
+ λ

1 + λ

3

and thus a = −(λ2−λ+1)/3 and b = −(2λ3− 3λ2− 3λ+2)/27. Plugging
this into the formula

j = 1728
4a3

4a3 + 27b2

then gives that

j(Eλ) = 28
(λ2 − λ+ 1)3

λ2(λ− 1)2
.

(2) From the above expression and using the description of Oλ, it is straight-
forward to show that if µ ∈ Oλ, then j(Eµ) = j(Eλ) and thus Eµ

∼= Eλ; we
just plug-in all elements of the orbit into the expression of the j-invariant.

On the other hand, given λ ∈ k \ {0, 1}, we want to show that only
elements of Oλ yield the same j-invariant. That is, we want to find the
roots of the polynomial

Fλ(X) = λ2(λ− 1)2(X2 −X + 1)3 − (λ2 − λ+ 1)3X2(X − 1)2.

Indeed, the elements µ ∈ k \ {0, 1} with j(Eµ) = j(Eλ) are precisely the
roots of Fλ. As we want to show that the roots are precisely Oλ and the
leading coefficient of Fλ(X) is λ2(λ− 1)2, let us define also

Gλ(X) = λ2(λ− 1)2
∏
α∈Oλ

(X − α)

= (X − λ)(Xλ− 1)(X + λ− 1)(X −Xλ− 1)(Xλ− λ+ 1)(Xλ−X − λ).

If we can show that Fλ(X) = Gλ(X), then we are done. In principle we
could just compute this, but here is a slightly smarter way to do it: notice
that there is a non-empty open subset U ⊆ A1 \ {0, 1} such that for all
λ ∈ U , the orbit Oλ has precisely 6 elements. To see this, note that if two
expressions in the orbit agree, this gives a quadratic equation for λ, so if
we exlude the finitely many solutions to these finitely many equations, we
get the desired U . As we computed that all the elements of the orbit give
the same j-invariant, we conclude that for λ ∈ U , Gλ is a polynomial with
6 simple roots and leading coefficient λ2(λ − 1)2, and every root of Gλ is
also a root of the degree 6 polynomial Fλ, which also has leading coefficient
λ2(λ − 1)2. Hence in this case we have Fλ = Gλ. But then, if we define
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F,G ∈ k[X, Y ] by

F (X, Y ) := Y 2(Y − 1)2(X2 −X + 1)3 − (Y 2 − Y + 1)3X2(X − 1)2

G(X, Y ) := (X − Y )(XY − 1)(X + Y − 1)(X −XY − 1)(XY − Y + 1)(XY −X − Y ),

we obtain by the above argument that V (F −G) contains the non-empty
open subset A1 ×U , and thus V (F −G) = A2, i.e. F = G. This concludes
the exercise.

7


